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Abstract

Lipschitz Sampling, unlike standard space filling strategies (Minimax and Maximin

distance, Integrated Mean Squared Error, Eadze-Eglais, etc.) for producing good meta-

models, incorporates information from output evaluation in order to estimate in some

sense the local complexity of the function at hand. The complexity indicator considered

is a suitable definition of local Lipschitz constant. New points are proposed to be evalu-

ated where the product of the local Lipschitz constant by the distance from the nearest

already evaluated point is maximum.

Benchmarks are proposed on standard test functions in comparison with standard space

filling strategies. Smaller prediction errors are obtained by Lipschitz sampling when the

function considered shows sudden variations in some part of the domain and varies more

slowly in other regions.
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1. Introduction.

This paper deals with the problem of approximating a nonlinear un-
known function, representing the outcome of some physically interesting
experiment. We assume that no measurement error is involved, i.e., re-
peated experiments with the same input settings return exactly the same
function values. In the design of experiments (DoE) literature, these are
referred to as computer experiments, because usually those are numerical
codes mimicking some relevant physical phenomenon. Sometimes this pro-
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cess is known as metamodeling, because the aim is to substitute the numer-
ical code, the model of the physical process, with a numerically inexpensive
surrogate metamodel, i.e., a model of the model [1–6].

We are not interested here in a specific approximation method, which
could be a neural network, a sum of radial basis functions, a gaussian pro-
cess, indifferently, but rather on the positions where the test points should
be placed in the experimental domain. In other words we want to find the
optimal design of a computer experiment with respect to the approximation
error over the whole domain. For the benchmarks, we will employ gaussian
processes, because they have an universal character (an equivalence with
radial basis functions and neural networks can be established) and they are
commonly used and referred to in literature [2,6].

One obviously argues that the optimal set of input points depends on the
unknown function to be modeled. Indeed, the standard way to tackle this
problem is to find a DoE which could serve for a whole class of functions,
independently on the specific case. The answer is a DoE essentially built
on a criteria of spatially uniform distribution, which is defined in one stage,
without involving the actual function values in the process.

Our proposal is a sequential procedure which defines a local complexity
criterion based on the function values accumulated insofar and then selects
new input values accordingly. A number of benchmarks is conducted for
low dimensional examples, showing that in general a blind sequential space
filling DoE is outperformed by the strategy proposed here.

2. Metamodeling

Metamodeling, also referred to as Response Surface Methodology, or
Surrogate Function, is a practice adopted in recent times for extracting
relevant information from the outcomes of costly or lengthy experiments.

The scope is to determine the functional relation between the inputs
and the outcome of an experiment, e.g., the output of a FEM code, or the
concentration of the synthesized compound in a chemical process, or the
human development index for a possible world scenario of resources and
consumption [7] et cetera. The canonical procedure consists in extracting
the main effects (first and second order contributions) of the inputs on the
output (see [8–10]), or furthermore, as in the case we are interested in, to
extract a the full nonlinear functional relation, in some suitable form [11,12].
The substitution of the experiment (the real function) by a metamodel (the
surrogate function) can be performed when the following conditions are met:

1. the numerical surrogate, i.e., the metamodel, is sufficiently flexible
to reproduce the desired function behavior.
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2. The function behavior should be predictable. The more the function
is smooth, the more it is simple to reproduce it.

3. Finally it is necessary to have collected enough information on the
function: the test points should be denser than the characteristic
range of variation of the function. In analogy with Nyquist, it is
necessary to have enough points to avoid aliasing phenomena.

We will focus mainly on the last issue.
Which are then the appropriate criteria for collecting the information?

In literature this task is referred to as exploration. Indeed it is reasonable,
if we do not know anything about the function we should fire our shots all
around the experimental region. Quoting T. Santner [2],

“Because we don’t know the true relation between the re-
sponse and inputs, designs should allow one to fit a variety
of models and should provide information about all portions
of the experimental region.”

Moreover, because we assume that our experiments are deterministic, it is
a waste to repeat the same experiment or to perform experiments on too
close locations. The choice should be also independent on the particular
features of the metamodel employed, because we also do not know which
could be the best suited kind of metamodel for the problem at hand.

Therefore we could name our task to fill the space uniformly. This can
be done easily, and without ambiguity in the one dimensional case, but it
is far than trivial to accomplish such a program in the multivariate case.

In fact, there exists in literature a number of possible approaches, each
one with its own motivations.

3. Space filling strategies

We could group the space filling DoEs in two main class. In the class of
sampling based strategies we have among others:

1. regular grids,
2. random sequences,
3. quasi random sequences (e.g., Halton, Sobol’, Hammersley) [13],
4. stratified samplings as latin hypercube designs [14],
5. randomized orthogonal arrays [2].

Criterion based strategies contain

1. uniform design [15],
2. maximin/minimax distance design [16],
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3. tessellation (n-volume) based,
4. statistical/entropy based [1].

For the sampling based ones it is emphasized the special algo-
rithm/strategy which generates the sequence of points. Important features
characterizing one method if compared with the others are for instance the
possible sample sizes in relation with the spatial dimension, the possibility
to add further points at later stages or how they look like when they are
projected on subspaces.

On the other hand, for the criterion based family the emphasis is shifted
to the optimality principle which should be satisfied by the set of points,
without mentioning how this optimality is reached. The fact is that there
are several different ways to define precisely the idea of “uniformity”.

3.1. Mixed strategies

Trying to accomplish one of the optimality criteria is usually desirable,
because the sampling strategies alone are either not satisfactory or are not
useful in practical cases. E.g., regular grids could be the best choice, but
require exponentially large samples as the dimension grows. On the other
hand, finding optimal samples is medium sized dimensional spaces is a
computationally tough problem (finding the best displacement of n points
in a d–dimensional space is a problem with n × d degrees of freedom).
Moreover, some of the criteria are also difficult to compute, because they
require the computation of an integral over the domain, or need to find
an extremal value for an auxiliary function. In the everyday practice, the
most effective choice seems to adopt a mixed strategy, i.e., choosing the best
realization of an optimality criterion among a sufficiently large number of
candidates produced by a sampling strategy.

3.1.1. Generator

A fast and reliable strategy for generating candidate samples is Latin
Hypercube Design (LHD) [14]. Latin Hypercube designs (LHD) are a special
kind of stratified sampling [14] which have been conceived for numerical
quadrature with a faster convergence speed than pure Monte Carlo. An
LHD of n points is defined by partitioning each coordinate variable in n
strata with the same probability and by extracting d − 1 permutations
σj(·) of n symbols. The first point of the design is defined by picking its
first coordinate in the σ1(1)th stratum, its second variable in the σ2(1)th
stratum and therefore the jth coordinate of the ith point has to be picked in
the σj(i)th stratum of the jth variable. Values can be taken at the center
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of the stratum or picked randomly according to the probability density
prescribed.

LHD possess several desirable properties: they are flexible (i.e., an n–
points sample can be defined for any d < n dimension), they are easily gen-
erated, and they show good marginalization). In other words, the projection
of the LHD on each coordinate follows the prescribed probability distribu-
tion, because there is only a point for every stratum by construction (see
Figure 1). However, the points could not be disposed at best a priori, indeed

1 4
2 7
3 1
4 3
5 6
6 5
7 2


Fig. 1. A Latin Hypercube Design of n in two dimensions is defined by a permutation
of n symbols. The projections of the design on the coordinate variables are uniformly
distributed.

there possibly emerge clusters or undesired correlations among variables.
Consider for instance the trivial permutation σ(i) ≡ i and the (absolutely
valid) LHD associated.

3.1.2. Criterion

A sound and tractable criterion is the Maximin distance [16]. A maximin
distance design (MmD) is the set of n points D in a d–dimensional hyper-
cube Hd which maximizes the minimum distance among pairs of points:

D := max
D⊆Hd

#{D}=n

min
x1,x2∈Dp

‖x1 − x2‖ .

In a sense, points are repelling each other, therefore clusterization phe-
nomena are certainly avoided, however, a drawback is that, especially in
large dimensions, points are likely to be scattered on the boundary of the
domain, taking no points in its interior. When looking at the marginal dis-
tributions, i.e., at the projections on the individual variables, points are all
collapsed on the intervals extrema.

Another serious problem already mentioned is the exponential computa-
tional complexity of the problem of finding such a design. In fact, although
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Fig. 2. A maximin distance design of 3 points in the square.

the criterion is quite easily computed, the number of variables is large (n×d)
and the problem presents several nontrivial symmetries.

3.1.3. Mixing the criteria

A mixed strategy, as suggested before, is maybe the most effective way of
tackling the question and overcoming the difficulties discussed above. The
coupling of LHD as a generator of candidate designs with the Maximin
distance criterion is guaranteed to generate samples with good marginal
properties and avoiding the correlations among variables. Moreover, be-
cause of the simplicity of the definitions, large sets of tentative samples can
be generated and tested, giving with a good probability to attain an almost
optimal design.

Fig. 3. Comparison of a purely random LHD (left), a pathologic LHD with extreme
correlation (center) and the 21 points Maximin LHD (right).

All those features make the Maximin LHD one of the most used designs
for fitting metamodels to computer experiments (see [2] and the references
therein).
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4. Adaptive samplings

Uniform space exploration may be the best approach for getting a good
average performance over a broad class of unknown functions, but clearly
it could be a limiting choice when considering a specific problem.

Indeed, as long as the function values are computed and accumulated,
the emerging specific behavior of the unknown function could reasonably
be involved in the decision process of the domain exploration. In fact, it is
a waste proceeding in evaluating new sites without taking into considera-
tion the information accumulated, especially when function evaluations are
costly or lengthy. Some subregion of the experimental domain could reveal
an incremented difficulty in being modeled, thus requiring a more intense
exploration than other less complicated regions. Clearly this intuition must
be more precisely defined. The function plotted in figure 4 for instance,

Fig. 4. An example of a smooth function with a region where sudden variations happen.
Green dots are disposed according a space filling criterion. Red dots, on the other hand,
concentrate in the peaked zone.

shows a general smooth behavior almost everywhere (some low frequency
character) except for a small region where the function is markedly peaked.
We would like to define a sampling strategy capable of concentrating in the
high frequency zone, while spreading uniformly in the remaining zones, as
exemplified by the sample of red points. For doing so we must define a local
indicator of complexity for the function, which, on the basis of the function
values accumulated, would reflect the needed sampling density for accu-
rately reproducing the function behavior. We will define such an indicator
noticing that the magnitudes of first and second derivatives should be pos-
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itively correlated with the difficulty of reproducing the function behavior.
Indeed, if derivatives are small the function cannot jump and wiggle too
much.

5. A Lipschitz criterion

It is well known that in the study of partial differential equations, Lip-
schitz constants are employed for bounding the nonlinear character, and
therefore the complexity, of the functions involved.

(1) Lf,D := sup
x1,x2∈D
x1 6=x2

|f(x1)− f(x2)|
|x1 − x2|

The Lipschitz constant can be considered as a complexity indicator also for
other reasons, for instance because it gives an upper bound on the number
of oscillations of a given amplitude (see figure 5). Lipschitz constant also
establishes bounds on the maximum and minimum value a function can
assume in a given range: if the distance between two points x1, x2 is d > 0,
the difference between the corresponding responses f(x1), f(x2) cannot be
larger than Lf · d. On the other hand, phenomena such as the curvature,

Fig. 5. A function with a subregion with a small Lipschitz constant (green) an another
region with a larger one (red).

certainly related to the complexity of a response, are not captured by the
Lipschitz constant, therefore alternative definitions of complexity, comple-
menting Lipschitz, should be devised and compared. Moreover, little can
be said about the smoothness of a function with finite Lipschitz constant.
Indeed, Lipschitz functions are continuous and almost everywhere differ-
entiable, but sharp angles (infinite curvature) can occur. These properties
are involved and exploited in a family of global optimization algorithms re-
ferred to as Lipschitz optimization (see for instance [5,17] and the references
therein).
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We proceed by defining a compound complexity indicator which will be
attached to every component of a suitable tessellation of the domain.

5.1. Lipschtiz sampling algorithm

In Algorithm 5.1 we state precisely what we mean by Lipschitz sampling.
The procedure is illustrated with an example in figure 6, and is based on
the definition of the merit function

(2) merit(x) := L(x)×Radius(x), x ∈ D.

Here x is an arbitrary point in the domain D, L(x) is an estimate of the
local Lipschitz constant and Radius(x) is the distance from the closest point
xj in the starting dataset D. The Lipschitz constant is estimated for every
Voronöı cell in the domain, by considering every possible linear interpolation
of f containing the center of the cell and a subset of d adjacent nodes
in the tessellation. Some of the details of the algorithm can be modified
according to the sensibility and the experience of the experimenter, e.g., the
specific space filling algorithm, or the number and the percentage of selected
candidates. The percentage of selected points is related to the space filling
character of the algorithm, which prevents the concentration in singular
zones which could lead to missing some important features not captured in
the starting sampling. The impact of the Lipschitz constant could also be
controlled by adding an upper threshold.

As a space filling algorithm we chose in the benchmarks a sequential
maximin distance strategy, consisting in taking sequentially the center of
the largest empty ball contained in the domain.

5.2. Computational cost

The computational cost of the method is dominated by the Delau-
nay triangulation, which gives the sequence of candidate points. As re-
ported in [18], the Delaunay triangulation of n points in dimension d costs

O
(
nfloor(

d
2
)
)

. Further issues related to the curse of dimensionality are dis-

cussed in the conclusions.

6. Benchmarks

We analyze the performances of Lipschitz sampling over three test func-
tions in two dimensions: a sum of two bump functions, the Branin function
and an Heaviside like step function.
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Algorithm 5.1 Lipschitz sampling

1: Given f unknown in the domain D ⊆ Rd and a starting set of points
D = {x1, . . . , xn} ⊆ D

2: evaluate of f at the points x1, . . . , xn in D
3: repeat
4: build the Delaunay/Voronöı tessellation corresponding to x1, . . . , xn
5: for all node xj ∈ D do
6: compute all possible linear interpolations of f on the set of points

composed by xj and its adjacent nodes in the Delaunay triangula-
tion. Set Lj as the maximum Lipschitz constant among the linear
interpolations. Associate the constant to the Voronöı region of the
node xj

7: end for
8: by means of a space filling algorithm, define a set of 2m new candidate

points in D
9: for all candidate points x do

10: compute the merit function merit(x) := L(x)×Radius(x), where
L(x) is the Lipschitz constant of the Voronöı region to which x
belongs, while Radius(x) is the distance from the nearest node,
i.e., the center of the region

11: end for
12: pick the m candidates with the largest merit function and evaluate

f on them. Include the new points and their function values in the
dataset and discard the remaining candidates

13: until the desired size of the DoE is reached

Experiments are performed as follows. Comparisons are made between
a random DoE, an incremental maximin space filler DoE and Lipschitz
sampling. Performances are computed on a validation dataset consisting
in a 20 × 20 regular grid over the experimental region. The performance
is the standardized mean squared error (SMSE), which is the averaged
mean squared error, normalized on the variance of the response in the
validation dataset, and is plotted in logarithmic scale. Training datasets of
increasing sizes 10, 25, 40, 55, . . . , 190, 205, 220 are successively built
for the space filler and for Lipschitz. A Gaussian process metamodel [6] is
fitted to the dataset and the SMSE is evaluated on the validation dataset.
The performance of the Random DoEs is averaged over 15 replications.
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(a) (b)

(c) (d)

Fig. 6. Lipschitz sampling. The function (a) is evaluated on a starting arbitrary sample
at first (greend dots in (b)) and the domain is tessellated in Voronöı cells accordingly. Next
a set of candidate points (green dots in (c)) is built according to a spacefilling criterion
(here a sequential maximin strategy). A Lipschitz complexity indicator is computed for
each candidate multiplying the Lipschitz constant of the region to which it belongs by
the distance from the nearest node of the tessellation. Finally the candidates with the
highest values for the indicator are selected (red dots in (d)).

6.1. Doubly bumped function

This example consists in the sum of two similar bump functions:
(3)

f(x1, x2) := exp

(
−5

x21 + x22
2

)
+ 2 exp

(
−100

(x1 + 0.6)2 + (x2 − 0.6)2

2

)
,
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This function is used for testing the capabilities of an optimization algo-
rithm to find the global maximum, or for studying robust optimization
issues, i.e., estimating when a nominal optimal configuration retains its
optimality under perturbation. According to intuition, Lipschitz sampling
(red dots) concentrates around the sharp peak (see figure 7).

(a) (b)

(c)

Fig. 7. Benchmarks on the double bump function (3). Performances are evaluated by
computing the standardized mean squared error on a regular grid of 20 × 20 validation
points (panel (c)). The function is approximated by fitting a gaussian process metamodel
on a training sample of increasing size. Comparisons are made among the average of 15
replication of a random DoE (blue line in panel (c)), an incremental maximin distance
DoE (green dots in panel (b), green line in (c)) and Lipschitz sampling (red dots in (b)
and red line in (c)).
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6.2. Branin function

The Branin function (see figure 8) is often used for assessing the per-
formance of global optimization algorithms.

(4) f(x1, x2) :=

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10.

where (x1, x2) ∈ [−5, 10]× [0, 15].

Fig. 8. Benchmarks on the Branin function (4). Performances are evaluated by comput-
ing the standardized mean squared error on a regular grid of 20 × 20 validation points
(panel (c)). The function is approximated by fitting a gaussian process metamodel on a
training sample of increasing size. Comparisons are made among the average of 15 repli-
cation of a random DoE (blue line in panel (c)), an incremental maximin distance DoE
(green dots in panel (b), green line in (c)) and Lipschitz sampling (red dots in (b) and
red line in (c)).
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6.3. Heaviside like step function

Let

(5) h(x) :=

{
1 if x1 < −x22,
−1 otherwise,

(see figure 9). In panel (b) we notice that the design gets denser and denser
along the singularity curve, while the remaining part of the domain is not
completely abandoned, but is progressively filled, though more slowly.

Fig. 9. Benchmarks on the Heaviside like step function (5). Performances are evaluated
by computing the standardized mean squared error on a regular grid of 20×20 validation
points (panel (c)). The function is approximated by fitting a gaussian process metamodel
on a training sample of increasing size. Comparisons are made among the average of 15
replication of a random DoE (blue line in panel (c)), an incremental maximin distance
DoE (green dots in panel (b), green line in (c)) and Lipschitz sampling (red dots in (b)
and red line in (c)).
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6.4. Conclusions and future work

As it can be observed in all of the examples examined, exploiting the
information on the problem gained during the exploration process is worth-
while, even with the simple criterion proposed here. In particular, the algo-
rithm is effective in refining regions where sudden variations take place,
where for instance some important change in the behavior of the phe-
nomenon modeled occurs, like in the case of phase transitions. We plan
to complement the features of Lipschitz sampling by means of other in-
dicators, like estimates of the curvature. Another crucial issue seems the
curse of dimensionality. Indeed we tested our strategy in small or medium
sized problems. In large dimension, > 10, it is very problematic to fill the
space satisfactorily with moderately sized samples: the sequential maximin
distance space filler, e.g., places the largest part of the points on the bound-
ary of the domain. The Maximin LHD can overcome this problem, but it
remains difficult to augment the size of the sample: it is easy for instance to
double the size, but other choices are problematic. We think that in large
dimensional cases it should be necessary to employ techniques of sensitivity
analysis for screening the input variables [11,12]. Indeed usually the sparsity
of effects occurs, i.e., there is a marked hierarchy among the importance of
the input variables on the response, and therefore it is wasteful trying to
fill in all directions indifferently.

We finally mention the problem of modeling several responses at the
same time. This is a quite typical issue in industrial design, where ap-
proaches focussing on a single performance indicator could be misleading
or even dangerous. When the restraint system of a car is designed, e.g.,
there are more than ten different injury indicators to be considered, and
trying to improve the system behavior with respect to one of them usually
deteriorates some of the others.

For the problem we are considering, i.e., improving globally the accu-
racy of metamodels for several responses, we define a compound complexity
indicator involving all the Lipschitz constants of the different responses. We
normalize the individual merit functions and take as an overall merit func-
tion the max of the normalized merit functions:

(6) merit(xc) = max
j=1,...,nOutput

Li(xc)

〈Li〉
·Radius(xc), ∀xc candidate.

This strategy should perform better than simply considering in turn a re-
sponse at a time and adding new points accordingly. If one or more re-
sponses shows a nontrivial correlation, improving one of them improves also
the merit functions of the correlated ones, so during the successive steps
the efforts of the algorithms can concentrate on the remaning responses.
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The normalization presents also some non trivial features. One could
normalize dividing by the global Lipschitz function computed on the do-
main, or by the average of the Lipschitz constants over the adjacent cells,
or over an hypervolume of prescribed size. The choice of normalizing by the
global Lipschitz constant could penalize excessively very singular responses,
for instance.

In our implementation we adopted a normalization of the local Lipschitz
constants by means of the average over the set of candidate points, i.e.,

(7) L̃i(xc) :=
Li(xc)

〈Li〉
, where 〈Li〉 =

∑
xc
Li(xc)

# {xc}
.

Lipschitz sampling has been included in the multiobjective optimization
software modeFRONTIERr [19].
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