

CFD Simulation of Dry Low Nox Turbogas Combustion System

L. Bucchieri - Engin Soft F. Turrini - Fiat Avio

Develop a CFD model for turbogas combustors to calculate and predict:

- temperature field for liquid and gaseous fuel combustion
- $^{\circ}$ combustion delay in premix chambers
- ✓ ⊕ wall heat fluxes on walls
- $^{\circ}$ emission predictions: Nox and CO

DLN: CFD Simulation of sprays and combustion for premixed turbogas

- **DLN Combustor Configuration**
- CFD Model and Boundary conditions
- CFD Preliminary analysis and Validations of Lean Premixed Prevaporized Duct
 - Aerodynamic Field
 - **Droplet trajectories and vaporization**
- CFD Preliminary Combustion Analysis
 - **EBU OIL model**
 - EBU gas model
- CFD model development
 - **4 step kinetic model**

8 LPP ducts 1 Pilot

Combustor can and transition duct

Basket inside view looking against flow

FiatAvio

Premixing Duct view - swirlers - injectors

- Spray simulation requires: particle tracking, evaporation and mixing
 - \checkmark Lagrangian particle tracking model with evaporation
 - Mass fraction equation of evaporated fuel for mixing
 - Hundamentally important to have accurate atomization data for boundary conditions (particle sizes and distribution, Rossin Rammler etc..)
 - Mixing in premix chamber and validation of DSM
 - 1 Initially only the premix chamber is simulated and validated by Differential Stress Model over K-Epsilon for turbulence
 - $\stackrel{\frown}{\oplus}$ Valid assumption because from thermocouple measurements, $T_{wallpremix}=T_{airinlet}$ hence nothing burns in premix chamber

Preliminary analysis Spray FiatAvio

Numerical modeling

- multiblock hexahedral optimized mesh
- AMG solver for key equations (pressure, enthalpy)
- Coupling of heat and mass transfer by the lagrangian particle tracking and the fluid model

Diesel particle tracks

Spray model (Antoine equation)

$$P_{vap} = e^{(A - \frac{B}{T - C})}$$

Based on atomization assumption

Preliminary analysis: Spray

- Spray procedure in CFX4
 - ¹ Underelax particles to 0.5
 - $^{\circ}$ AMG on Pressure and Enthalpy
 - 20 couplings between particles and 100 flow iterations: total 2000
 - $^{\circ}$ Underelax viscosity for turbulence oscillations into momentum equations

Experimental data

FiatAvio

Pressure profile, exit premix Cone

Swirl velocity profile, exit premix Cone

Axial velocity profile, Exit premix Cone

Experimental Droplet distribution (SMD)

CFX particle trajectories

- Dry Low Nox combustor uses two fuels
 - **⊕** methane
 - 🗇 oil (heavy diesel)
- First cold flow analysis
 - **Oil model combustion**
 - 🗇 simulated with Eddy Break Up model with Arrhenius term
 - particles first have to evaporate into a fuel mass fraction which burns

Methane

- → simulated mixed is burnt with Beta 40 points pdf (no delay in combustion)
- simulated with EBU and Damkoeler number cutoff (some delay but not correct)

CFD preliminary analysis FiatAvio Cold Flow

Cold Flow

- ${}^{\checkmark}\!\!\!\oplus$ Compressible and turbulent flow
- Mach 0.9 injection nozzle for methane
- AMG solver on Pressure
- Courant number and High Mach Number Simple algorithm employed
- Heavy relaxation on Viscosity
- Deferred correction on K and Epsilon
- 1000 iterations

CFD Preliminary Analysis FlatAvio Cold Flow

CFD preliminary analysis FiatAvio Combustion

OIL Model

- Particle vaporization time introduces a delay in combustion which produced combustion after premixing chamber in agreement with experiments
- OILHM routine changed to include evaporation range over two temperatures
- 30 couplings of particles versus 200 fluidynamic iterations: total 6000
- AMG solver on pressure and Enthalpy
- Heavy relaxation on viscosity and temperature
- 1 Iterate twice on temperature and scalars

DLN: combustion EBU oil FiatAvio

CFD preliminary analysis FiatAvio Combustion

Gas Model

- AMG solver on pressure and Enthalpy
- Heavy relaxation on viscosity and temperature
- 1 Iterate twice on temperature and combustion scalars
- Arrhenius term and Damkoheler cutoff
 - varied several times
 - methane burns too quickly
 - practically no combustion delay
 - unsatisfactory results

- Ran both 2 step and 4 step model
 - 2 step reduced kinetic scheme (6 species, N2 in background)
 - [^]¹ CH4+3/2O2 ---> CO + 2H2O
- 4 step reduced kinetic scheme (7 species, N2 in background)
 - **1** CH4+1/2O2 ---> CO + 2H2
 - [^]¹ ² CH4+ H2O ----> CO + 3H2
 - [^]¹ 3 H2+1/2O2 <---> H2O
 - **℃** 4 **CO+ H2O <---> CO2 + H2**

- A pre-exponential factor
- β temperature exponent
- Ea activation energy
 - X_i species concentration
 - a_i forward rate exponent

$$\mathbf{R} = \mathbf{A} \, \mathbf{T}^{\beta} e^{-Ea/RT} \prod_{i=1}^{Ns} [X_i]^{\alpha_i}$$

FiatAvio

Reaction constants

	А	ß	Ea	CH4	02	H2O	H2	CO
R1	0.44e+12	0	1.258e+8	0.5	1.25			
R2	0.3e+9	0	1.258e+8	1.0		1.0		
R3	0.68e+16	-1	1.676e+8		2.25	-1.0	1.0	
R4	0.275e+10	0	8.38e+7			1.0		1.0

- 2 step model did not give right delay
- 4 step model gave almost right delay with standard literature constants
- 2 step sequential reactions and easy to converge
- 4 step competing reactions not so easy to converge
 - impossible to converge unless iterating twice on 6 species and temperature
 - $^{\circ}$ CPU time approximately 3 times higher than EBU
 - ${}^{\circ}$ problems with backward reaction rates

Emissions

- Nox model to be tuned (Clarke & Williams, Malloggi, Oksanen ??)
- C Experimental measuraments (1.2 meters) outside CFD domain (0.6 meters)

DLN: Conclusions

Conclusion

- RSM model validated mixing data and particle trajectories
- BBU combustion only satisfactory for oil

Further investigations

- Combustion stability (off design conditions)
- $^{\circ}$ CO an Nox models to review and validate at transition exit
- test and validate models over a wide range of TURBOGAS cycle operational conditions